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Abstract-We describe a boundary integral approach to solidification problems for which the Stefan 
number, and transition temperature, depend on time. The approach is applied to a simple model of alloy 

solidification and some sample problems are solved. 

1. INTRODUCTION 

THE SOLIDIFICATION of alloys is an extremely complex 
process that is difficult to model, even for situations 
involving only one spatial dimension [l, 21. Besides 
the phenomena of heat conduction, phase transition 
and mass diffusion, the process can often involve recir- 
culation in the melt region. Because of this complexity, 
some simplified models have been developed [3]. One 
such model, the ‘well-stirred’ model, attempts to take 
some account of both heat and mass transport. For 
the melt region, the model assumes the heat and mass 
transport to be so rapid as to cause the composition, 
and temperature, to be spatially uniform. However, 
within the solid, the mass transport is assumed neg- 
ligible and the temperature taken to satisfy the full 
heat equation. Whilst by no means perfect, the model 
gives a reasonable representation of several sol- 
idification processes. Consideration of these ideas can 
be found in the book by Chalmers [3] and, more 
recently, in a paper by Alexiades [4]. 

The paper by Alexiades applies the well-stirred 
model to some problems in one dimension. However, 
many important processes cannot be simplified to this 
extent. Consequently, it is the purpose of this paper 
to develop a method for applying the well-stirred 
model to problems with two spatial dimensions. 
Under suitable conditions, the well-stirred model can 
be regarded as a Stefan problem with the Stefan num- 
ber, and transition temperature, depending on time. 
In Section 2, it is shown how such problems can be 
solved using a boundary integral approach. The 
approach is an extension of the one described in ref. 
[5]. Se&on 3 considers the well-stirred model and 
Section 4 describes the solution of some sample prob- 
lems. 

2. THE BOUNDARY INTEGRAL EQUATIONS 

Consider the problem of finding a temperature field 
T that satisfies the two-dimensional heat equation 

FIG. 1. Region B. 

?“__o (1) 

over a region 3 that is bounded by a fixed curve aB* 
and a moving curve 8B’ (Fig. 1). It is assumed that, 
at each point of 83*, the temperature or heat flux is 
specified. Further, it is assumed that aB+ constitutes 
a phase change on which the conditions 

and 
T = Tf(t) 

i?T 
- = cc(t)v, 
an 

(2) 

(3) 

are satisfied. Quantity aT/&z is the normal derivative 
of temperature on aB+ and v, is the normal velocity 
of aB+. The above problem is of the Stefan type, but 
with the Stefan number, and transition temperature, 
depending on time. 

Space-time scales are chosen for which pcjk is 
unity. Further, the moving boundary is interpreted as 
a surface S+ in space-time and assumed to satisfy an 
equation of the form 

t-f(x,y) = 0. (4) 

Boundary aB* may be regarded as a cylindrical sur- 
face S* in space-time and is taken to coincide with 
dBf at time t = 0. 

Let G be the function 
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NOMENCLATURE 

A cross-sectional area of the liquid 

Ao initial cross-sectional area 
B region occupied by the solid 
aB* fixed boundary of B 
dB + moving boundary of 3 
c specific heat of the solid 
c’ specific heat of the liquid 

k] 
concentration of impurity 
jump in concentration 

C” concentration of impurity in the solid 
C’ concentration of impurity in the liquid 

CL initial concentration in the liquid 
ds’ line element 
dS’ surface element 

s height of S+ above the t = 0 plane 

f' fevaluated at (x’, y’) 
G fundamental solution 
k conductivity of the solid 
L latent heat of fusion 
n, n’ coordinates normal to the boundary 
P* polygon approximation to dB* 
P” polygon approximation to aB+ 
r, r’ position vectors 

I time coordinates 
i;: time increment 
T temperature field 
T T evaluated at (x’, y’, t’) 

T& fusion tem~rature of an impurity free 
liquid 

TE temperature of the external environment 

T, initial temperature of the liquid 

Tf solidification temperature 
s* space-time surface traced out by dB* 
S+ space-time surface traced out by aB+ 
S’ part of S+ 

“F? normal velocity of aB+ 

x, *Y’, Y, Y’ spatial coordinates. 

Greek symbols 
Stefan number 

; r,ir,- 1 
Y, slope of the solidus 

YI slope of the liquidus 
2 a parameter of the integral equation 

P1 density of the liquid 

P density of the solid. 

which satisfies the equation 

( 
$+$+z G=- 

$P > 

then 

; (T’G)+V’-(T’V’G-GV’T’) 

s ice 

0 

6(t-t’)li(r-r’) 

= -T’d(t-t’)6(r--r’) (5) 

where T’ = T(r’, 1’) and V’ = (a/ax’, ajay’). On inte- 
grating equation (5) over the space-time region 
between surfaces 5’” and Sf , and noting that surface 
S+ has the unit outward normal (Vf, -l)/ 

(l+lVfl ) 1 * ‘j2 the divergence theorem in space-time 
yields 

- s [V’T’,V’f”+T,(t’)]G-T,(t’)V’G*V’f‘dS, 

s’ (1 +]V’f’12)‘Q 

= -AT(r, t) (6) 

where S’ consists of that part of S + for 0 < t’ < t and 
ajan’ represents the normai derivative on i?B*. The 
term A takes the value l/2 at regular boundary points 
and 1 at points away from the boundary. From equa- 
tion (4), Y, = l/lVf 1 and so equation (3) will become 

VT-Vf =-61 

which, on substitution in equation (6) yields 

- [a(t)+ T,(t’)]G- T~(t’)VfG*V’f ‘dY, 

(I +(V’f’]2)“2 L 

= -iT(r, t). (7) 

The Last integral on the left-hand side of equation (6) 
may be evaluated by projection onto the x,--y’ plane 
and so 

I+0 s SC T’; - G$ ds’dt’ 
0 as* > 

- {[a(t’)+ T,(t')]G 

-T,(t’)V’G.V’f’~l,,=f,dx’dy’ = -AT(r,t) (8) 

where B is the projection of S’ onto the x/-y’ plane. 
Expression (8) provides both an integral equation 

that determines the unknown boundary fields and an 
expression for the temperature field in terms of these 
values. However, this assumes that ,f(x, y) be known, 
which is not the case. Function f(x,y) is determined 
by the requirement that T be the transition tem- 
perature when 1 = f(x, y). Consequently, equation (8) 
will also provide an integral equation for S(x, JJ). 

In all but the simplest problems, a numerical sol- 
ution will be necessary. Bounds bB* is approxi- 
mated by the N-sided polygon P* and ZB’ by the N- 
sided polygon P +. (P* is fixed and is taken to coincide 
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FIG. 2. The phase diagram. 

with P+ at time t = 0.) Time is divided into intervals 
of duration At and, during any interval, each side of 
P* will trace out a space-time quadrilateral. On such 
quadrilaterals, Tand dT,Gn are approximated by their 
centroidal values. Collocation of equation (8) at each 
quadrilateral centroid then produces a set of equa- 
tions that determines the approximation. 

The solution proceeds in a step-by-step fashion. At 
the ith step, the approximate boundary fields, and P+, 
are assumed to be known for times from 0 to (i- 1)At. 
The shape of P+ at time iAt is estimated by extra- 
polation from the corresponding polygons at times 
(i- l)At and (i-2)At. Then, for the time interval from 
(i- 1)At to iAt, the approximate boundary fields are 
derived from a suitably discretized version of equation 
(8). (A suitable version of equation (8) will also pro- 
vide the global temperature field.) An improved esti- 
mate for polygon P+ at time iAt is found in the fol- 
lowing fashion. For each vertex, a search is made of 
the line that joins the corresponding vertex at time 
(i- 1)At to the mean position of these vertices. The 
improved vertex will then correspond to the point at 
which the phase-change temperature occurs. Once all 
the vertices have been improved, the boundary fields 
are recalculated and the vertices readjusted if further 
refinement is required. Obviously, for the first step, 
the extrapolation procedure is invalid. Consequently, 
in this case, the vertex positions are estimated by 
assuming each side to have moved according to the 
relevant planar solution [6]. (Further details of the 
numerical procedure may be found in ref. [5].) 

3. DiLUTE ALLOYS 

Consider the two-dimensional solidification of a 
binary alloy. Assuming the concentration C (weight 
fraction) of one component (the impurity) to be weak, 
it is possible to approximate the phase diagram by 
that shown in Fig. 2. Let CS and C’ denote the con- 
centrations of impurity in the solid and liquid phases, 
respectively. When transition takes place 

and 

C’ = +-,- TA) 

where yS and y, are the slopes of the straight lines. 
The melt region is assumed to be ‘well stirred’, 

which means that a change at any point in the melt 
will be rapidly averaged out over the whole melt. 
Consequently, C and T will be uniform throughout 
the melt. Further, when solidification begins, the melt 
will have already cooled to its transition temperature. 
Once a given point has solidified, the concentration C 
is assumed to be frozen at its value for the instant of 
solidification (no movement of impurity in the solid 
phase). 

Let A, be the initial cross-sectional area of the melt 
and let A be the area at time t. In moving from solid 
to liquid phases, there is a jump in concentration. 
Consequently, if the melt area changes by dA, the 
concentration will change by 

dC’ = [C]dA/A 

where [C] = C”- C’. It is obvious that ySC” = y,C’ and 
so 

[C] = C’ ; - 1 
( ) 

. 

consequently 

which yields 

(11) 

where B = y,/y.- 1 and C’,, is the initial concentration 
of impurity. Further, the transition temperature will 
be given by 

0 A @Cl T,(t) = TA+YI A, o (12) 

Consider the situation where a length ds of the 
solidification front advances a distance dn. There will 
be a change dnds in melt area and so a temperature 
drop of 

in the melt. For each unit length perpendicular to the 
plane, the heat liberated by this drop will be 

A B 
c’p’y,p A Cbdnds 0 0 

where p’ is the density of the melt and c’ is its specific 
heat. However, because of the phase change, there 
will be an additional amount of heat liberated. If L is 
the latent heat of fusion, this additional heat will be 
given by p’L ~FI ds. The liberated heat will be absorbed 
by the solid phase. Consequently, on the solid side of 
the phase change 
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where k is the conductivity of the solid phase. Here 
we have assumed that, for a temperature drop due to 
impurity extraction, the heat is removed at the same 
site as the impurity. 

p’c’/k is also assumed to be unity. Consequently, since 
L/c’ = 410°C for the present alloy [4], p’L/k will 
assume the value 0.35745 in terms of the new scales. 
The boundary condition at the body surface will be 

C?T 
an = K( T- T,) 

In the notation of the previous section and K is chosen such that dT/anl,= o = - 1. 
Consider the solidification of an infinite rod of 

square cross-section, each side of the square having 
length 2. For discretization purposes, the boundary 
of the cross-section is divided into 80 equal length 
intervals and time into intervals of duration 0.04. 
Although the discretization would appear to intro- 
duce 80 unknowns at each time step (the 80 mid- 
segment values of T), these are reduced to 10 by virtue 
of the symmetry in the problem. Simulations using 
the methods of Section 2 predict the phase change to 
move in the fashion shown in Fig. 3(a). The figure 
shows the top right-hand corner of the rods cross- 

section with phase-change curves sampled at times 
0.0, 0.12,0.24, 0.36 and 0.48. For the final solid, each 
curve will constitute a contour of constant con- 
centration, the respective concentrations being 20, 
12.16, 7.27, 3.76 and 1.36%. Figure 4(a) shows the 
temperature distribution on a half side of the cross- 

section. 

4. SOME EXAMPLES 

Consider the solidification of a copper-nickel alloy 
[4]. For such an alloy, T, = 1083”C, y, = 640°C and 
ys = 320°C. During solidification, the body surface is 
assumed to lose heat at a rate proportional to T- T, 
where TE is the temperature of the external environ- 
ment. For the current simulations, TE is taken to be 
0°C. At the instant before solidification starts, the 
melt is assumed to have a 10% concentration of nickel 
and so T,, the melt temperature at the start of sol- 
idification, will be 1147°C. A new temperature scale 
is introduced for which T, is zero and T, - TE is unity. 
Then, in terms of this scale, y, will assume the value 
0.55798 and ys the value 0.27899. Space-time scales 
are introduced for which pc/k becomes unity and 

t=“-oo I 
t=o.l* ;_, 

t=0.24 

t=o.ae 

t=0.40 

VI 

I 

h L__ - - - - (6) 

t =o.oo 

t=0.24 

1=0.36 

t=0.4e 

(b) 

FIG. 3. The phase-change fronts for linear cooling: (a) the 
well-stirred melt ; (b) fixed c( and r,. 

To check the validity of the simulation, it was 

repeated with a time step of 0.02 and the boundary 
divided into 120 equal length intervals. The original 

-0.6- 
t =0.46 

t =0.36 

t=0.24 

1=0.12 

O.OoA 
(6) DISTANCE FROM MID POINT 

-0.4 

1 

P 
t =a.6 
t = 0.48 
1-0.36 

t =0.24 

t=0.12 

O.Oo, 
(b) DISTANCE FROM MID POINT 

FIG. 4. The temperature distribution on the boundary: (a) 
linear cooling ; (b) non-linear cooling. 
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t =o.oo ) 

t=o.l* I-, 
‘~0.24 1-w 

t 10.96 

t=o.40 

t=o.so 

t =0.72 

??A h (a) L- _ 1 -_ 
t=o.oo, 

-- A 

FIG. 5. The phase-change fronts for non-linear cooling : (a) 
the well-stirred melt ; (b) fixed a and Tr. 

simulation predicted a time of 0.611 to complete sol- 
idification whilst the more refined discretization predi- 
cated a time of 0.602. Further, at time 0.48, the phase- 
change curves were within a distance 0.008 of each 
other. 

To gauge the effect of the well-stirred model, the 
above simulations were repeated with constant a(t) 
and T,(t) (values being chosen to coincide with a(O) 
and T,(O) from the above simulation). The phase- 
change curves are shown in Fig. 3(b), the sample times 
being the same as for Fig. 3(a). It can be seen that the 
only effect of the well-stirred model is to cause a 
slightly earlier rounding of the melt pool. However, 
this effect is accentuated if the rod surface loses heat 
in the fashion of a black body radiator, that is 

aT 
an = K(T4-T;) 

where K is a constant and temperatures are measured 
from absolute zero. Consider a simulation for which 
K is chosen such that i3T/&zll= ,, = - 1, temperatures 
resealed as before. For a well-stirred melt, the move- 
ment of the phase change is illustrated in Fig. 5(a). 
The figure shows the top right-hand corner of the 
cross-section with phase-change curves sampled at 
times 0.0, 0.12, 0.24, 0.36, 0.48,0.6 and 0.72. For the 
final solid, each curve will constitute a contour of 
constant concentration, the respective concentrations 
being 20, 13.13, 9.20, 6.19, 3.82, 1.99 and 0.67%. 

t=O-OO I 
t=0.12 

t =0.24 

t =0.86 

t10.46 

(a) 

t=0.12 

t30.24 
t=O.SO 
t=0.46 

t=O.60 

(cl 

(b) 
t = 0.00 

t=0.12 
t -0.24 

t = 0.36 

t = 0.46 

FIG. 6. The phase-change fronts for a well-stirred melt : (a) 
linear cooling ; (b) non-linear cooling ; (c) mixed cooling. 

Figure 4(b) shows the temperature distribution on a 
half side of the cross-section and Fig. 5(b) shows the 
corresponding phase-change curves for a simulation 
with cr(t) and Tf(t) held constant. 

As a further example, consider the solidification of 
a rod whose cross-section is bounded by the curves 
y = x2, x = - 1, x = 1 and y = 2. For discretization 
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purposes, the linear parts of the boundary are divided y = 2 is subject to the above non-linear condition 
into 40 equal length segments and the curved part and the rest of the boundary subject to the linear 

into 32 equal length segments. Time is divided into condition. For Figs. 6(a) and (c), the sample times 

intervals of duration 0.04. The melt is assumed to be are 0.0,0.12, 0.24,0.36 and 0.48. Figure 6(b) includes 

well stirred and solidification is considered for three an additional sample at time 0.6. 
different sets of boundary conditions. Figures 6(ak 
(c) show the simulated development of the phase- 
change curves for that part of the rod cross-section 
with x > 0. Figure 6(a) shows the development with 1, 
boundary condition 
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aT 
z = K(T- TE) 

and K chosen such that aT/anl,= ,, = - 1. Figure 6(b) 
shows the development with boundary condition 

4, 

aT 
an = K(T4 - T;) 

5. 

6. 
and K chosen such that aT/an I,= o = - 1. Finally, Fig. 
6(c) shows the development when the boundary at 

UNE APPROCHE INTEGRALE LIMITE POUR LA SOLIDIFICATION D’ALLIAGES 
DILUES 

R&urn-n dtcrit une approche intigrale limite pour les probltmes de solidification dans lesquels le 
nombre de Stefan et la tempkrature de transition dkpendent du temps. L’approche est appliqute d un 

modele simple de solidification d’alliage et B quelques probltimes types. 

EINE GRENZ-INTEGRAL-NilHERUNG FUR DIE ERSTARRUNG VON 
VERDtlrNNTEN LEGIERUNGEN 

Zusammenfawmg-Wir beschreiben eine Grenzintegral-Nlherung fiir Erstarrungsprobleme, bei welchen 
die Stefan-Zahl und die Ubergangstemperatur von der Zeit abhlngen. Die NPherung wird auf ein einfaches 

Mode11 der Erstarrung von Legierungen angewandt, einige Muster-Probleme werden gel&. 

I-IPkiMEHEHAE HHTETPAJILHOI-0 METOAA m5I PEIIIEHMII 3AAAY 0 
3ATBEPflEBAHMM CI-IJIABOB 

AnnoTauneHwrerpanbHblti h4mop. npennaraeTcr npmdemub Qnn peluemn 3anas samepneaamn 

CnnaBoB c 3aFmcmwrm OT spehiemi YH~JIOM CTeoana B TeMnepaTypofi nepexona. MeTon nposepneTcn 
HanpocroiiMonenH.npHeeAeHblnpHMepbIpelueHunHeKoTopbrxsana9. 


